## U.S. DEPARTMENT OF OFFICE OF ELECTRICITY

The Role of Long-Duration Energy Storage in the Grid of the Future

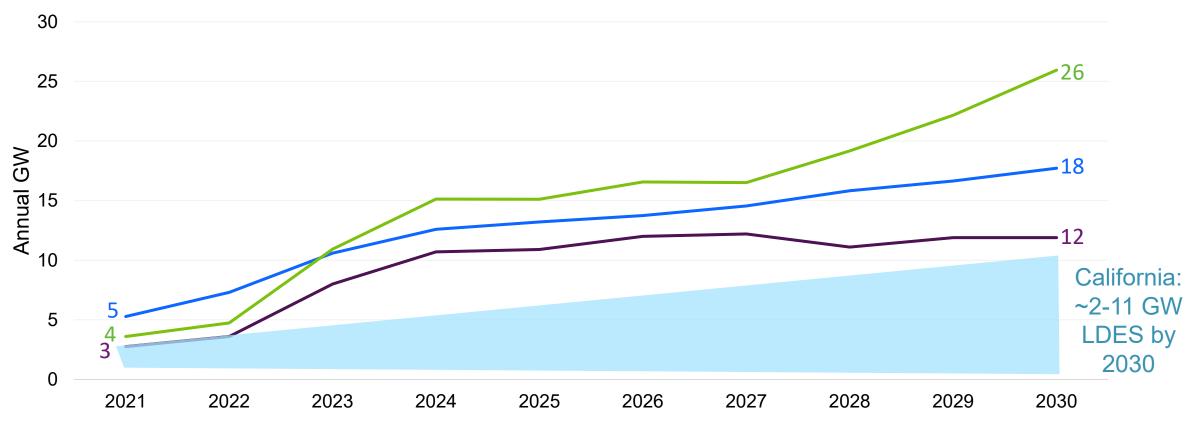
California Energy Storage Alliance (CESA) 14th Annual Market Development Forum

October 2023

Nyla Khan



## + Outline


- Storage landscape and path to 2030
- DOE and Office of Electricity's (OE's) actions to advance long duration energy storage (LDES)
- Opportunities for engagement



## Grid storage deployment is projected to rapidly grow

**Projected U.S. Stationary Storage Deployment (GW)** 

-IHS -WoodMac -BNEF



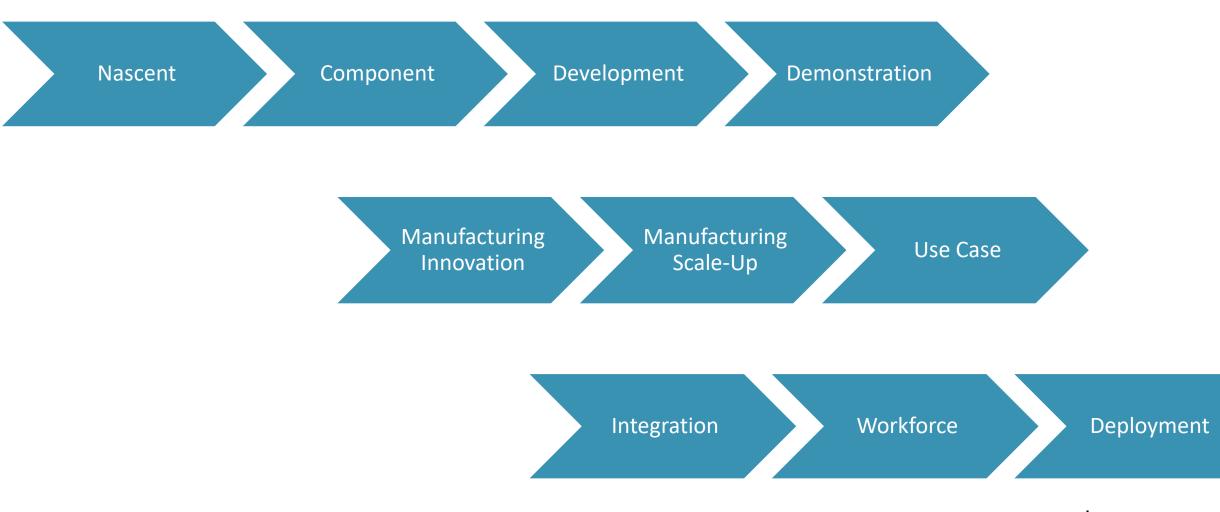


# Diverse technology options means improving the resiliency of grid storage supply chains

#### Lithium-ion Battery Supply Chain Risk Assessment Is the supply chain secure Are U.S. because the material is NOT suppliers Product/ on the proposed or current competitive Critical Materials List? OR Components in the global because the U.S. market? does NOT import > 50%? Lithium No Cobalt No No Nickel No No Manganese No No Iron Yes Yes Natural Graphite No No Silicon Yes Yes Refined LiOH/ No No Li2CO3 Refined CoSO4 No No Refined NiSO4/ C1 Ni No No **Refined Manganese** No No Synthetic Graphite No No Anode Materials Natural Graphite No No Anode Materials CAM/ p-CAM No No LIB Cathodes No No **Graphite Anodes** No No Maybe Silicon-based anodes No Separators No No No Electrolytes No Cells No No Modules/Packs/ Yes No Racks Energy Storage Maybe No System Packages Cells/ Packs No Yes Metals No

#### Flow Battery Supply Chain Risk Assessment

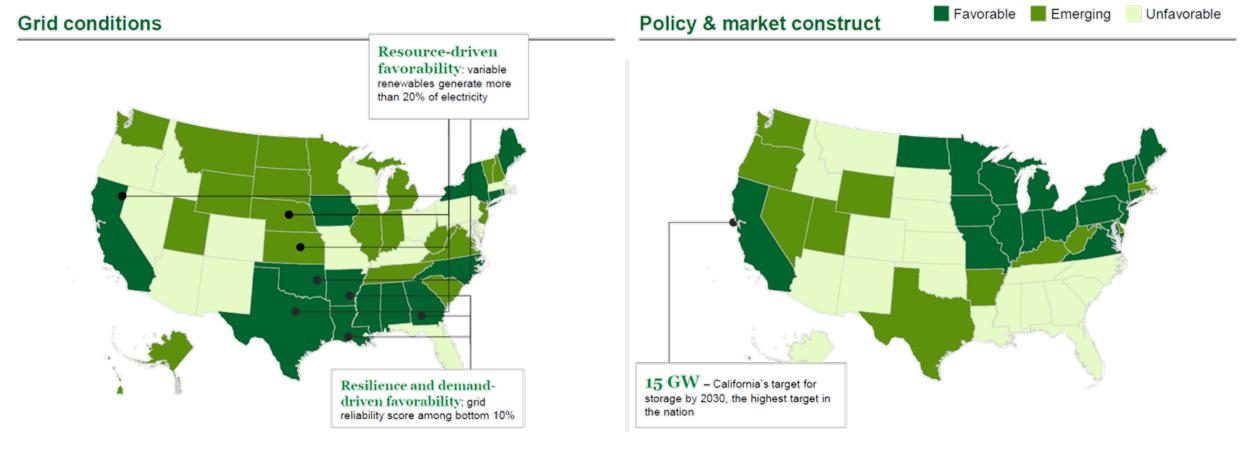
| Product/<br>Components              | Are U.S.<br>suppliers<br>competitive<br>in the global<br>market? | Is the supply chain secure<br>because the material is NOT<br>on the proposed or<br>current Critical Materials<br>List? OR because the U.S.<br>does NOT import > 50%? |
|-------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Iron                                | Yes                                                              | Yes                                                                                                                                                                  |
| Vanadium                            | No                                                               | Yes                                                                                                                                                                  |
| Zinc                                | Yes                                                              | Yes                                                                                                                                                                  |
| Manganese                           | No                                                               | No                                                                                                                                                                   |
| Sulfuric Acid                       | Yes                                                              | Yes                                                                                                                                                                  |
| Refined Iron                        | Yes                                                              | Yes                                                                                                                                                                  |
| Refined Vanadium                    | No                                                               | Yes                                                                                                                                                                  |
| Refined Zinc                        | Yes                                                              | Yes                                                                                                                                                                  |
| Hydrochloric Acid                   | Yes                                                              | Yes                                                                                                                                                                  |
| Graphite                            | No                                                               | Maybe                                                                                                                                                                |
| Sulfuric Acid                       | Yes                                                              | Yes                                                                                                                                                                  |
| Polyethylene                        | Yes                                                              | Yes                                                                                                                                                                  |
| Separator -<br>Polyethylene         | No                                                               | No                                                                                                                                                                   |
| Pumps                               | Yes                                                              | Yes                                                                                                                                                                  |
| Heat exchangers                     | Yes                                                              | Yes                                                                                                                                                                  |
| Electrolytes                        | Maybe                                                            | Maybe                                                                                                                                                                |
| Iron Flow Batteries/<br>Systems     | Yes                                                              | Yes                                                                                                                                                                  |
| Vanadium Flow<br>Batteries/ Systems | No                                                               | Maybe                                                                                                                                                                |
| Zinc Flow Batteries/<br>Systems     | No                                                               | Maybe                                                                                                                                                                |


#### Lead-acid Battery Supply Chain Risk Assessment

| Product/<br>Components | Are U.S.<br>suppliers<br>competitive<br>in the global<br>market? |     |  |  |  |  |  |
|------------------------|------------------------------------------------------------------|-----|--|--|--|--|--|
| Lead                   | Yes                                                              | Yes |  |  |  |  |  |
| Sulfur                 | Yes                                                              | Yes |  |  |  |  |  |
| Refined Lead           | Yes                                                              | Yes |  |  |  |  |  |
| Sulfuric Acid          | Yes                                                              | Yes |  |  |  |  |  |
| Polyolefin             | Yes                                                              | Yes |  |  |  |  |  |
| Separator              | Yes                                                              | Yes |  |  |  |  |  |
| Electrolyte            | Yes                                                              | Yes |  |  |  |  |  |
| Electrolyte Salts      | Yes                                                              | Yes |  |  |  |  |  |
| Electrolyte Solvents   | Yes                                                              | Yes |  |  |  |  |  |
| Lead Acid Batteries    | Yes                                                              | Yes |  |  |  |  |  |
| Lead Acid ESS          | Maybe                                                            | Yes |  |  |  |  |  |
| Lead                   | Yes                                                              | Yes |  |  |  |  |  |

DOE Grid Energy Storage Supply Chain Deep Dive Assessment



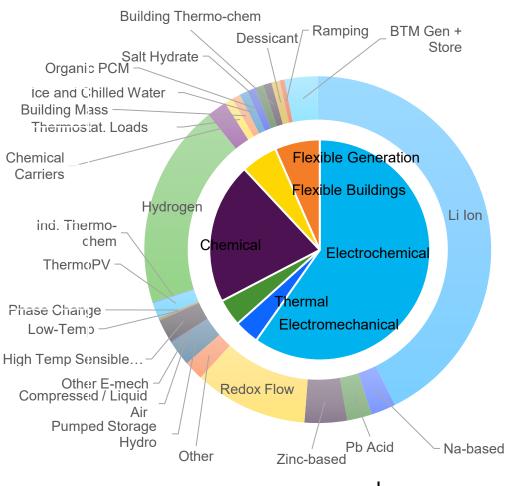

### The road to deployment has many steps





## LDES adoption readiness varies across states

Conditions for LDES deployment are:






## DOE has supported 30+ storage technologies

|             |                                                   | Li-Ion & Li-Metal           | _            |                        | High-Temperature Sensible Heat        |  |  |
|-------------|---------------------------------------------------|-----------------------------|--------------|------------------------|---------------------------------------|--|--|
|             | tric Storage<br>Electrochemical                   | Na-Ion<br>Na-Metal          |              | Thermal                | Phase Change                          |  |  |
| 0           |                                                   |                             |              |                        | Low-Temperature Storage               |  |  |
| age         |                                                   | Na-Ion Na-Metal Lead Acid O | Ť            | Thermo-Photovoltaic    |                                       |  |  |
| tor         |                                                   | Zinc                        | Thermal &    | Chemical               | Thermochemical                        |  |  |
|             |                                                   | Other Metals (Mg, Al)       | ma           |                        |                                       |  |  |
| ctri        | Ш<br>Ш                                            | Redox Flow                  | her          |                        | Chemical Carriers (e.g., Ammonia)     |  |  |
|             |                                                   | Reversible Fuel Cells       |              | Che                    | Hydrogen                              |  |  |
| nal I       |                                                   | Electro-Chemical            |              |                        | Thermostatically Controlled Loads     |  |  |
| tio         | Bidirectional Electric<br>Electromechanical Elect | Pumped Storage Hydro        | Loads        | gs                     | Building Mass                         |  |  |
| irec        |                                                   | Compressed Air              |              | ldin                   | Ice & Chilled Water                   |  |  |
| <b>3idi</b> |                                                   | Liquid Air                  | Generation & | Flexible Buildings     | Organic Phase Change Material         |  |  |
| -           |                                                   | Flywheels                   | Itio         | cible                  | Salt Hydrate                          |  |  |
|             | lecti                                             | Geomechanical               | lera         | Fle)                   | Thermochemical                        |  |  |
|             |                                                   | Gravitational               |              |                        | Desiccant                             |  |  |
| utting      | Crosscutting<br>Power<br>Electronics              |                             |              | Flexible<br>Generation | Ramping                               |  |  |
| Crossc      |                                                   |                             |              | Flex<br>Gene           | Behind-the-Meter Generation + Storage |  |  |

### DOE Funding Shares by Technology





# Recent federal legislation galvanizes support for energy storage at DOE

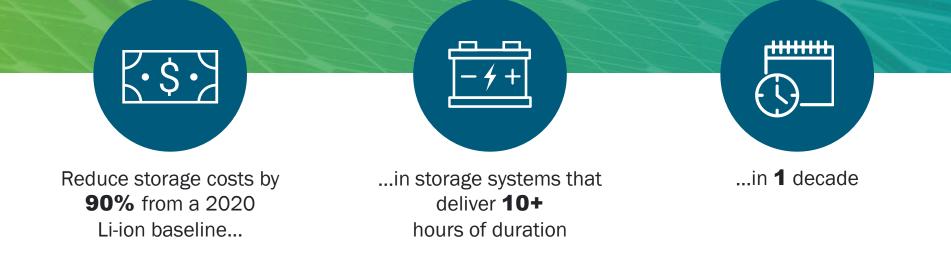
- Bipartisan Infrastructure Law (BIL)
  - 60 new DOE programs (48 demonstration & deployment)
  - Expands funding for 12 existing programs
  - \$505 million for LDES demo program (OCED)
  - \$10 billion for grid infrastructure programs (GDO)

Inflation Reduction Act (IRA)

- Funds investments and incentives totaling \$370 billion
- US to remain global leader in clean energy technology, manufacturing, and innovation
- Includes investment tax credits (ITCs) and production tax credits (PTCs) for energy storage and new loan authorities given to DOE

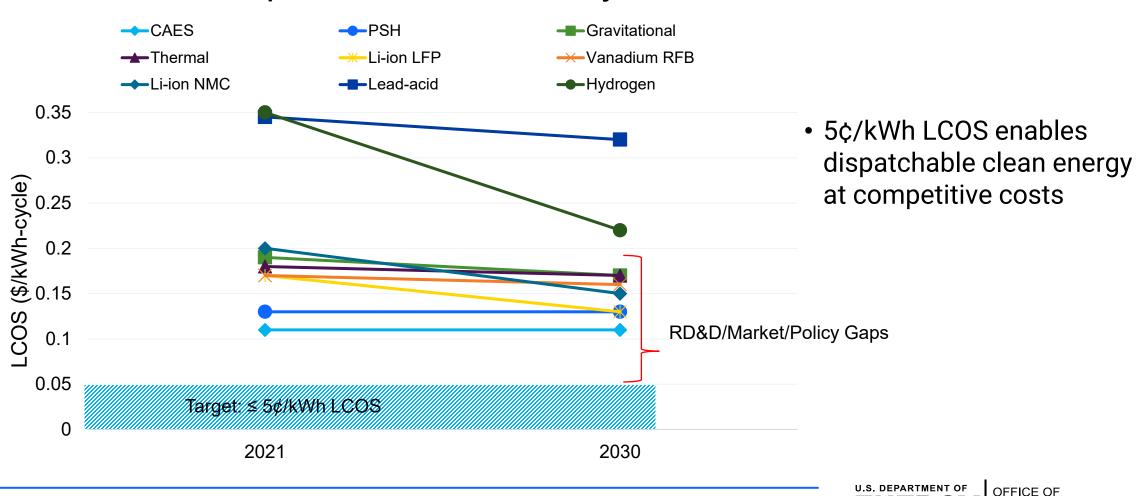


### Through the Energy Storage Grand Challenge, OE Leads Grid Storage Efforts Across DOE




|                                                      | Materials                                                     | Components &<br>Devices                                                                                                   | System Design                                            | Grid & System<br>Integration                            | Supply Chain<br>& Manuf. | Operations | End of Life | Investment &<br>Finance                   | Markets &<br>Value                                | Workforce              |
|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------------------------|------------|-------------|-------------------------------------------|---------------------------------------------------|------------------------|
| Electro-<br>chemical                                 | VTO, ARPA-E,<br>SC-BES                                        | AMO, VTO,<br>ARPA-E                                                                                                       | vto, arpa-e,<br>seto                                     | AMMTO, VTO                                              | AMMTO,<br>MESC           | OCED       | VTO         | LPO, OTT,<br>OCED,<br>AMMTO, LPO,<br>SETO | OTT, EERE-SA,<br>GTO, WPTO,<br>SETO, IEDO,<br>BTO | AMMTO, VTO,<br>OP, OTT |
| Electro-<br>mechanical                               | ARPA-E, WPTO                                                  | ARPA-E, WPTO                                                                                                              | ARPA-E,<br>WPTO                                          | WPTO<br>OE                                              | WPTO,<br>АММТО           | OCED       |             |                                           |                                                   |                        |
| Thermal                                              | ARPA-E, SETO,<br>SC-BES, BTO                                  | SETO, BTO                                                                                                                 | SETO, BTO                                                | SETO, BTO                                               | АММТО, ВТО               | OCED, SETO | SETO        | 0                                         | Ε                                                 | OE                     |
| Chemical                                             | HFTO,<br>SC-BES, ARPA-E                                       | HFTO                                                                                                                      | HFTO                                                     | HFTO                                                    | AMMTO                    | OCED       |             |                                           |                                                   |                        |
| Power<br>Electronics                                 | SC-BES, ARPA-E                                                | ARPA-E,<br>AMMTO, VTO                                                                                                     |                                                          | VTO, CESER                                              | AMMTO                    | OE         |             |                                           |                                                   |                        |
| Technologies Office, FE<br>IEDO: Industrial Efficien | : Office of Fossil Energy, GTC<br>cy and Decarbonization Offi | gy, AMMTO: Advanced Mate<br>D: Geothermal Technologies<br>ice, OE: Office of Electricity,<br>e Basic Energy Sciences, VTO | Office, HFTO: Hydrogen ar<br>OP: Office of Policy, SETO: | d Fuel Cell Technologies C<br>Solar Energy Technologies | Office,                  |            |             | u.s. departme<br>ENER                     |                                                   |                        |

Technologies Office, WPTO: Water Power Technologies Office




### LONG DURATION STORAGE SHOT TARGET



Affordable grid storage for clean power – any time, anywhere

# Business-as-usual conditions alone won't achieve \$0.05/kWh Levelized Cost of Storage (LCOS)



BAU LCOS Expectations for 10hr/100 MW System

#### We're beginning to understand potential LDES use case scenarios \_0W Inter-day (up to 24hr) Med

Multi-day / week (up to 100hr)

|                      |                                                                     |                         |                                              |                                                                                                                                                                        |                                                                                            | Tigh                           |  |
|----------------------|---------------------------------------------------------------------|-------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|--|
| Likely<br>deployment |                                                                     |                         | Use                                          | Application                                                                                                                                                            | Key<br>stakeholders<br>(non-exhaustive)                                                    | Competitive with<br>LIB today⁵ |  |
| 2022                 | 28 28 <sup>3</sup>                                                  | <mark>30</mark> 30⁴     | Load<br>management<br>services               | Large energy consumers (e.g., distribution<br>centers, industrials) could use LDES to manage<br>demand changes (e.g., freight charging<br>purposes during peak season) | <ul> <li>Large peaking<br/>power consumers</li> <li>Energy services<br/>players</li> </ul> |                                |  |
|                      | 10 10 <sup>3</sup>                                                  | <b>1</b> 1 <sup>4</sup> | Firming<br>for PPAs                          | Renewable PPAs can use LDES to ensure that businesses can procure 24/7 renewable electricity                                                                           | <ul> <li>Leading ESG<br/>customers</li> </ul>                                              |                                |  |
|                      | <b>24</b> 24 <sup>3</sup>                                           | <mark>26</mark> 26⁴     | Microgrid<br>resiliency                      | LDES can ensure reliable power in isolated areas or where the grid has shown to be unreliable / insufficient                                                           | <ul> <li>Local power authorities</li> <li>Microgrid developers or integrators</li> </ul>   |                                |  |
|                      | 157 <mark>85</mark> 24                                              | 2 17 77 94              | Utility<br>resource<br>planning              | Utilities or CCAs can include LDES in<br>integrated long-term energy planning to meet<br>VRE balancing needs                                                           | <ul> <li>Vertically integrated<br/>&amp; T&amp;D utilities</li> </ul>                      |                                |  |
| 2030+                | Highly dependent or<br>decisions – will be n<br>multi-day / week LD | nost applicable for     | Transmission<br>and Distribution<br>Deferral | LDES can offset the need for new transmission<br>and distribution capacity by installing storage in<br>constrained areas                                               | <ul><li>Utilities</li><li>T&amp;D developers</li><li>Equity infra investors</li></ul>      |                                |  |
|                      | <b>117 101</b> 217                                                  | 18 <mark>119</mark> 137 | Energy<br>market                             | LDES can play a role in shifting electricity from times of high supply to times of high demand,                                                                        | <ul><li>RES / T&amp;D developers</li><li>Asset owners (IPPs)</li></ul>                     |                                |  |

meet system peaks, and provide grid stability

(e.g., inertia, frequency regulation)

DOE Pathways to Commercial Liftoff – Long Duration Energy Storage

Based on demand potential from High Renewables Net-zero 2050 scenario

Based on net-zero 2050 scenario with a significant drop in Li-ion CAPEX according to NREL 'optimistic' projections

Based on the LDES Council Report use case opportunity sizing and adjusted to meet expected ISO demand

Maintains ratio of demand potential relative to sum of Utility resource planning & Energy shifting, capacity provision, and power system stability used in High-RES scenario and applies to Aggressive Li-ion scenario

participation

5 Economic (e.g., IRR for customer) and strategic (e.g., resiliency needs, ESG goals) competitiveness for LDES compared to lithium-ion batteries

Source: NREL (Storage Futures Study: Key Learnings for the Coming Decades), LDES Flagship Report (Net-zero power: Long duration energy storge for a renewable grid)



ELECTRICITY

ENERG

## A variety of LDES technologies hold promise

|           |                        | Faces geologic constraints <sup>1</sup>                                                          | Inter-day<br>Multi-da<br>Can fund |                         | esirable                    | More Desirable                  |                   |
|-----------|------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|-----------------------------|---------------------------------|-------------------|
| Duration  | Energy storage<br>form | Nominal<br>Technology                                                                            | Duration, hrs                     | <b>LCOS⁵,</b><br>\$/MWh | Min. deployment<br>size, MW | Average<br>RTE <sup>1</sup> , % | TRL               |
|           |                        | Traditional pumped hydro (PSH)                                                                   | 0–15                              |                         | 200 – 400                   | 70–80                           | 9                 |
|           | Mechanical             | Novel pumped hydro (PSH)                                                                         | 0–15                              | 70–170                  | 10–100                      | 50–80                           | 5-8               |
| inter dev |                        | Gravity-based                                                                                    | 0–15                              | 90–120                  | 20–1,000                    | 70–90                           | <mark>6-</mark> 8 |
| nter-day  |                        | Compressed air (CAES)                                                                            | 6–24                              | 80–150                  | 200–500                     | 40–70                           | 7-9               |
|           |                        | Liquid air (LAES) <sup>1</sup>                                                                   | 10–25                             | 175–300                 | 50–100                      | 40–70                           | 6-9               |
|           |                        | Liquid CO2 <sup>1</sup>                                                                          | 4–24                              | 50–60                   | 10–500                      | 70–80                           | 4-6               |
|           | Thermal                | Sensible heat (e.g., molten salts, rock material, concrete) <sup>2</sup>                         | 10-200 <sup>2</sup>               | 300                     | 10–500                      | 55–90                           | <mark>6-</mark> 9 |
|           |                        | Latent heat (e.g., aluminum alloy)                                                               | 25–100                            | 300                     | 10–100                      | 20–50                           | 3-5               |
|           | Electrochemical        | Thermochemical heat (e.g., zeolites, silica<br>gel)                                              | XX                                | XX                      | XX                          |                                 | XX                |
|           |                        | Aqueous electrolyte flow batteries                                                               | 25–100                            | 100-140                 | 10–100                      | 50–80                           | 4-9               |
|           |                        | Metal anode batteries                                                                            | 50–200                            | 100                     | 10–100                      | 40–70                           | 4-9               |
|           |                        | Hybrid flow battery, with liquid electrolyte and metal anode (some are Inter-day) <sup>2,3</sup> | 8–50 <sup>2</sup>                 | XX                      | >100                        | 55–75                           | 4-9               |

Source: Adapted from LDES Council Net-Zero Power Report 2021, Wood Mackenzie Long Duration Energy Storage Report 2022, Company websites, Academic research

1 Demand potential / market size is limited by the requirement for specific geological formations

2 Codified based on primary technology type

DOE Pathwavs 1

3 Can function as inter-day, but organized based on longest duration potential

4 Some flow batteries under development will not work for multi-day, but it is categorized here as such given the technology's maximum duration



# OE announced \$30 million to help enable the Long Duration Storage Shot (LDSS)



### Driving down LCOS

Storage

Technology Strategy

Assessment

10 Long Duration Storage Shot Technology Strategy Assessment reports

**\$15 million** Storage Innovations Technology Liftoff FOA

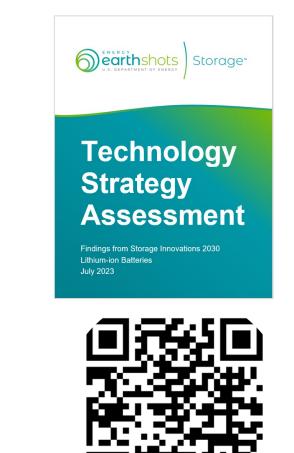
### Validating ES performance

Rapid Operational Validation Initiative (ROVI)

**\$15 million** Demonstration and Validation FOA

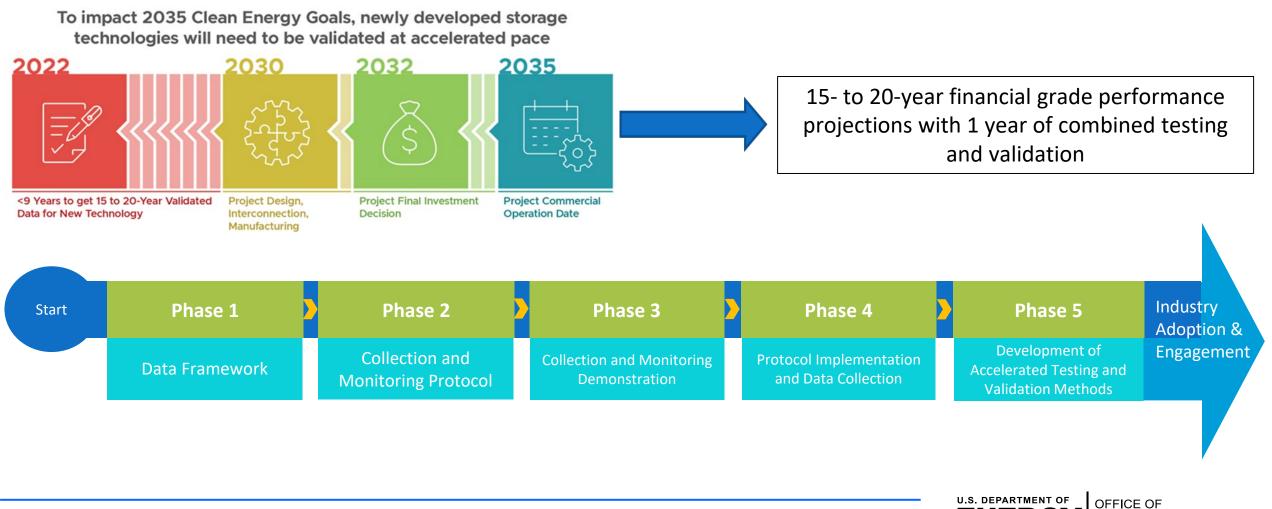




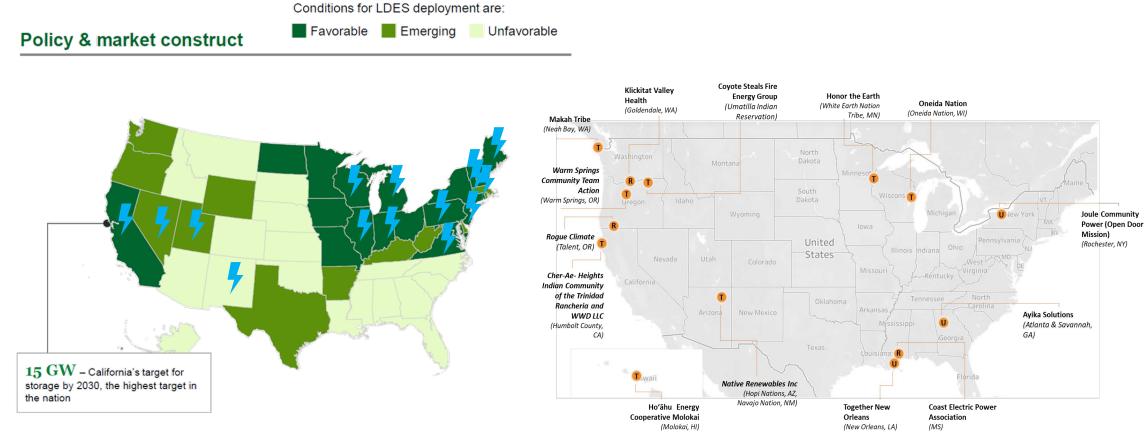

# Driving down LCOS: OE engaged with stakeholders to model the impact of innovation on cost for 10 LDES technologies

- Access to capital and financing
- Limited market opportunities
- Technology validation for industry acceptance
- Interconnection queues and permitting
- Integrating technologies
- Manufacturing supply chain
- Workforce development
- Standards and codes

### **10 LDSS Technology Strategy Assessment Reports**


- Lithium-ion
- Lead-acid
- Flow Batteries
- <u>Zinc Batteries</u>
- Sodium Batteries

- <u>Pumped Storage Hydropower</u>
- <u>Compressed-Air Energy Storage</u>
- <u>Thermal Energy Storage</u>
- <u>Supercapacitors</u>
- <u>Hydrogen Storage</u>






### Validating ES performance: the Rapid Operational Validation Initiative (ROVI) aims to make storage bankable, faster



## Preparing decisionmakers with technical assistance



States participating in DOE Storage-Focused technical assistance

Communities participating in DOE Storage-Focused technical assistance



### DOE's ES awardees\* span the storage pipeline

#### Nascent/Component (15)

#### Office of Electricity

Cache Energy (2023) Cryostone (2023) Electrified Thermal Solutions (2023) Gravity Power LLC (2023) KineticCore Solutions (2023) NerG Solutions (2023) RCAM Technologies (2023) Rondo Energy (2023) THEMES LLC (2023) Thermal Battery Corporation (2023)

#### **Office of Science**

Form Energy (via MIT) (2017)

#### ARPA-E

24M Technologies (2021) Sila Nanotechnologies (2021) South 8 Technologies (2023) Tyfast Energy (2023)

#### **Early Development (18)**

ARPA-E

24M Technologies (2023)

Ampcera (2023)

Antora Energy (2019)

Brayton Energy (2019)

Form Energy (2019)

Project K (2023)

RedoxBlox (2021)

Quidnet Energy (2019)

Solid Power Operating (2023)

United Tech. Research Center (2019)

Univ. of Tennessee, Knoxville (2019)

Urban Electric Power (via CUNY) (2010)

Columbia University (2021)

Echogen Power Systems (2019)

Energy Storage Systems (2012)

Michigan State University (2019)

Natron Energy (fmr. Alveo) (2013)

Nat. Renewable Energy Laboratory (2019)

#### Late Development (7)

Office of Electricity Redflow (2012)

Advanced Manufacturing Office Antora Energy (2021)

Solar Energy Technologies Office Brayton Energy (2021) Brayton Energy (2021)

Office of Clean Energy Demonstrations CMBlu (2023) E-Zinc (2023) Invinity Energy Systems (2023)

**ARPA-E** Quidnet Energy (2022)

#### Demonstration (12)

Office of Electricity GM Defense (2023) KORE Power/NOMAD (2023) Primus Power (2010)

Urban Electric Power (2023)

#### Office of Clean Energy Demonstrations Echogen Power Systems (2023) Energy Dome (2023) EOS Energy Enterprises (2023) Form Energy (2023) Invinity Energy Systems (2023) Redflow (2023) ReJoule (2023) SmartVille (2023)

Manufacturing Innovations (6)

Advanced Manufacturing Office Largo Clean Energy (2021) OTORO Energy (2021) Quino Energy (2021) TreadStone Technologies (2021)

ARPA-E Natron Energy (2021) Zeta Energy (2023)

#### Use Case/Integration (14)

Office of Electricity Ayika Solutions Incorporated (2023) Coast Electric Power Association (2023) Corvias (2023) Green Mountain Power (2023) Ho'âhu Energy Cooperative Moloka'i (2023) Native Renewables (2023)

#### **Office of Clean Energy Demonstrations**

Alliant Energy (2023) Faraday Microgrids (2023) Nat. Renewables Coop. Organization (2023) New York Power Authority (2023) NextEra (2023) Solar Bear (2023) Westinghouse Electric Co. (2023) Xcel Energy (2023)

#### Manufacturing Scale Up (22)

Office of Manufacturing and **Energy Supply Chains** 6k Inc (2022) Albemarle U.S. (2022) American Battery Technology Co. (2022) Amprius (2022) Anovion (2022) Applied Materials, Inc. (2022) Ascend Elements Inc. (2022) Cirba Solutions (2022) Group14 Technologies Inc. (2022) ICL-IP America Inc. (2022) Koura (2022) Lilac Solutions (2022) Membrane Holdings LLC – ENTEK (2022) Microvast (2022) NOVONIX Anode Materials LLC (2022) Piedmont Lithium Inc. (2022) Sila Nanotechnologies (2022) Solvay Specialty Polymers USA, LLC (2022) Syrah Technologies LLC (2022) Talon Nickel (USA) LLC (2022)

#### Loan Programs Office

EOS Energy Enterprises (2023) KORE Power (2023)



## **CESA members who are DOE Awardees**\*

#### Nascent/Component (15)

#### Office of Electricity

Cache Energy (2023) Cryostone (2023) Electrified Thermal Solutions (2023) Gravity Power LLC (2023) KineticCore Solutions (2023) NerG Solutions (2023) RCAM Technologies (2023) Rondo Energy (2023) THEMES LLC (2023) Thermal Battery Corporation (2023)

#### Office of Science Form Energy (via MIT) (2017)

#### ARPA-E

24M Technologies (2021) Sila Nanotechnologies (2021) South 8 Technologies (2023) Tyfast Energy (2023)

#### Early Development (18)

ARPA-E 24M Technologies (2023) Ampcera (2023) Antora Energy (2019) Brayton Energy (2019) Columbia University (2021) Echogen Power Systems (2012) Energy Storage Systems (2012) Form Energy (2019)

Michigan State University (2019) Nat. Renewable Energy Laboratory (2019) Natron Energy (fmr. Alveo) (2013) Project K (2023) Quidnet Energy (2019) RedoxBlox (2021) Solid Power Operating (2023) United Tech. Research Center (2019) Univ. of Tennessee, Knoxville (2019) Urban Electric Power (via CUNY) (2010)

#### Late Development (7)

Office of Electricity Redflow (2012)

Advanced Manufacturing Office Antora Energy (2021)

Solar Energy Technologies Office Brayton Energy (2021) Brayton Energy (2021)

Office of Clean Energy Demonstrations CMBlu (2023) E-Zinc (2023) Invinity Energy Systems (2023)

**ARPA-E** Quidnet Energy (2022)

#### Demonstration (12)

Office of Electricity GM Defense (2023) KORE Power/NOMAD (2023) Primus Power (2010)

Office of Clean Energy Demonstrations Echogen Power Systems (2023) ENERGY Dome (2023) EOS Energy Enterprises (2023) Form Energy (2023) Invinity Energy Systems (2023) Redflow (2023) ReJoule (2023) SmartVille (2023) Urban Electric Power (2023)

#### Manufacturing Innovations (6)

Advanced Manufacturing Office Largo Clean Energy (2021) OTORO Energy (2021) Quino Energy (2021) TreadStone Technologies (2021)

ARPA-E Natron Energy (2021) Zeta Energy (2023)

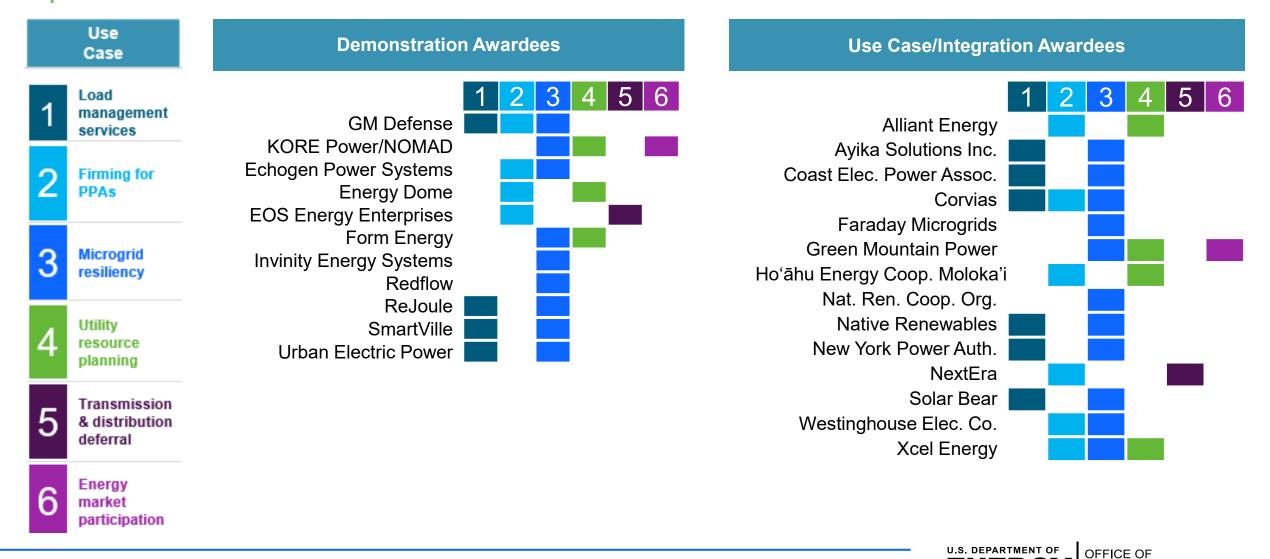
#### Use Case/Integration (14)

Office of Electricity Ayika Solutions Incorporated (2023) Coast Electric Power Association (2023) Corvias (2023) Green Mountain Power (2023) Ho'āhu Energy Cooperative Moloka'i (2023) Native Renewables (2023)

#### **Office of Clean Energy Demonstrations**

Alliant Energy (2023) Faraday Microgrids (2023) Nat. Renewables Coop. Organization (2023) New York Power Authority (2023) NextEra (2023) Solar Bear (2023) Westinghouse Electric Co. (2023) Xcel Energy (2023)

#### Manufacturing Scale Up (22)


Office of Manufacturing and **Energy Supply Chains** 6k Inc (2022) Albemarle U.S. (2022) American Battery Technology Co. (2022) Amprius (2022) Anovion (2022) Applied Materials, Inc. (2022) Ascend Elements Inc. (2022) Cirba Solutions (2022) Group14 Technologies Inc. (2022) ICL-IP America Inc. (2022) Koura (2022) Lilac Solutions (2022) Membrane Holdings LLC – ENTEK (2022) Microvast (2022) NOVONIX Anode Materials LLC (2022) Piedmont Lithium Inc. (2022) Sila Nanotechnologies (2022) Solvay Specialty Polymers USA, LLC (2022) Syrah Technologies LLC (2022) Talon Nickel (USA) LLC (2022)

#### Loan Programs Office

EOS Energy Enterprises (2023) KORE Power (2023)



### Recent Demo/Use Case awardees involve LDES use cases



ELECTRICITY

## Workforce and Educational Programs



Reaching a New Energy Sciences Workforce (RENEW)





CHAIN REACTION Entrepreneurship at Argonne Crossroads Cyclotronroad

More Consortia

More Serial



# The Grid Storage Launchpad (GSL) will be a new signature facility for storage advancement



- 90,000 sq. ft facility; expected completion early 2024
- Provide systematic and independent validation of new grid storage technologies
- Basic materials and components, through prototyping under grid operating conditions (<100kW)</li>

U.S. DEPARTMENT OF

ENERG

OFFICE OF



# Engage with DOE



### **Opportunities:**

FOA exchange

Office of Electricity | Department of Energy



### Events: Energy Storage Grand Challenge Summit

OE Peer Review



Email lists Energy Storage Grand Challenge





Webinars

**Reach out** 



### **Access relevant DOE resources**

### 

Pathways to Commercial Liftoff: Long Duration Energy Storage

### Grid Energy Stora

Supply Chain Deep Dive Assessment

U.S. Department of Energy Response Order 14017, "America's Supply Cha

February 24, 2022

### 2022 Grid Energy St Technology Cost and Performance Assess

Vilayanur Viswanathan, Kendall Mongir Xiaolin Li, Vincent Sprenkle\*, Pacific No Laboratory.

Richard Baxter, Mustang Prairie Energy

#### \* vincent.sprenkle@pnnl.gov

Technical Report Publication No. PNNL-33283 August 2022

# Technology Strategy

earthshots

Storage<sup>™</sup>

Assessment

Findings from Storage Innovations 2030 Lithium-ion Batteries

24





**Eric Hsieh** Deputy Assistant Secretary



Imre Gyuk Chief Scientist

### Meet OE's Energy Storage Division



**Ben Shrager** Storage Analysis



**Caitlin Callaghan** Director, Storage Materials & Systems



Nyla Khan Storage Materials & Systems



**Mo Kamaludeen** Director, Storage Validation



Vinod Siberry Storage Validation

