

CEO/CTO, Nuvation Energy

10



TO

MARTIN RHEAULT

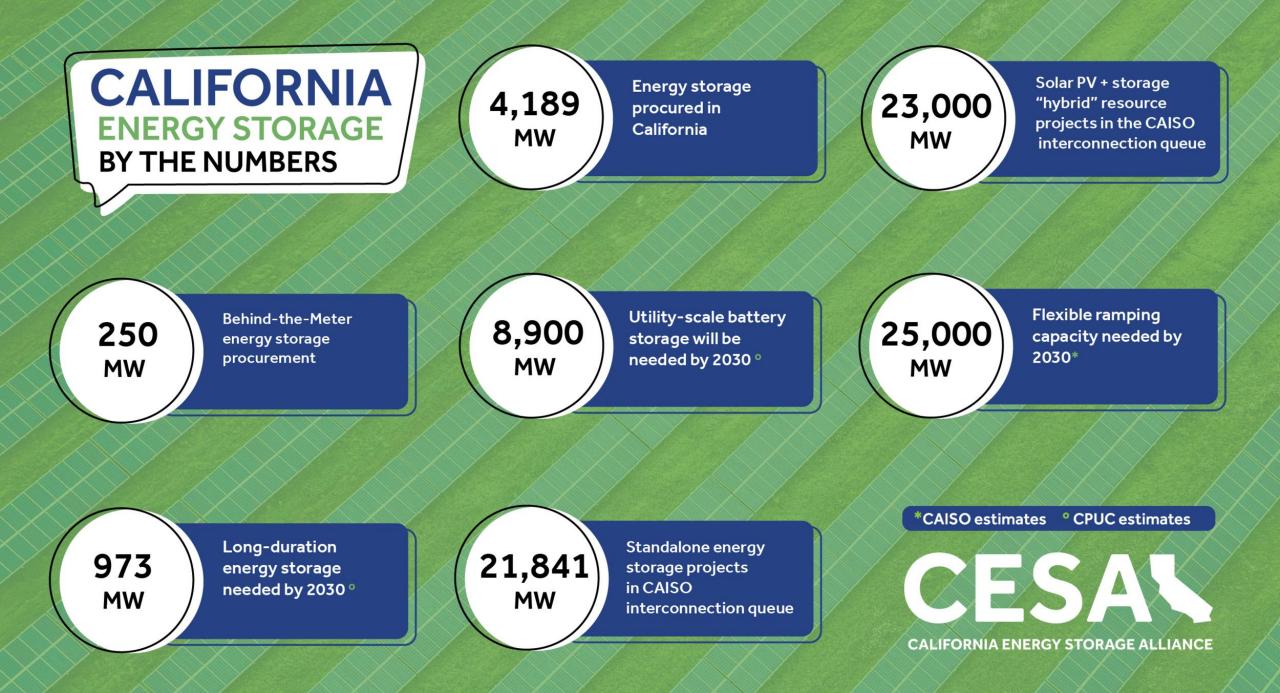
Business Development Engineer, Nuvation Energy



CALIFORNIA ENERGY STORAGE ALLIANCE

### CHOOSING THE RIGHT ENERGY STORAGE SYSTEM

VP of Sales & Business Development, EVLO Energy Storage


NUVATION

# Introduction





#### **Jin Noh** Policy Director California Energy Storage Alliance



# **About CESA**



The California Energy Storage Alliance is the definitive voice of energy storage in California.

At 100+ members strong, CESA is committed to advancing the role of energy storage in the electric power sector.

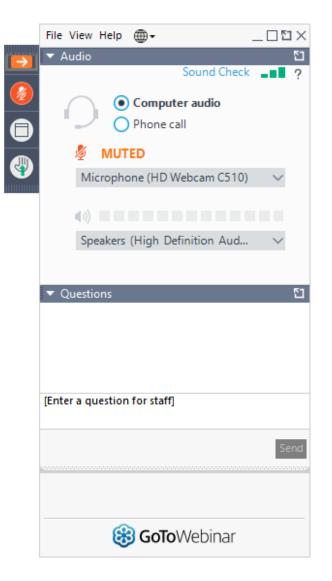
CESA is a 501c(6) membershipbased advocacy group. CESA is technology and business modelneutral and is supported solely by the contributions and coordinated activities of its members.

# **Our CESA Members**





# Agenda


#### CESAL CALIFORNIA ENERGY STORAGE ALLIANCE

#### Welcome

- Identifying the Right Energy Storage Solution for your Needs – Michael Worry, Nuvation Energy
  - Nameplate vs. Usable Energy
  - Up Front Costs vs. Total Cost of Energy
- Total Cost of Ownership Comparisons
   Joe O'Connor, Nuvation Energy
- Case Studies Martin Rheault, EVLO Energy Storage
- Q&A
- Opportunities with CESA

# Housekeeping

- All participants are in listen-only mode
- Webinar is being recorded and will be posted to <u>www.storagealliance.org</u>
- Q&A conducted through "Questions" panel in menu
- Time reserved for Q&A at the end





# **Introduction: Michael Worry**

- CEO / CTO of Nuvation Energy
- Electrical Engineer, University of Waterloo, Canada
- Founded Nuvation 1997
- Day job: Energy Storage Systems



Hobbies: Energy Storage Systems





# NUVATIONENERGY Choosing the Right Energy Storage System for your Specific Application

Energy Storage Systems • Battery Management Systems Energy Management Systems • Field Commissioning

# NUVATION OFFICIAL RESELLER EVLO Energy Storage

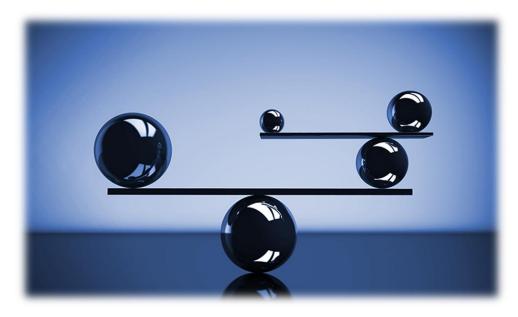
- Turn-key ESS with Nuvation BMS
  - Partnership since 2018
  - Reseller agreement in 2021
  - Deliveries available in Q4 2021
- EVLO product line includes:
  - EVLO-500 500 kWh 10-ft ISO container
  - EVLO-1000 1 MWh 25-ft enclosure
  - EVLO-1650 1.65 MWh (coming 2023)














# THE PERFECT ESS?

- No safety risk, available now, no downtime, no maintenance
- No onsite assembly, infinite cycle life, unlimited capacity
- Oh, and it's free!

Well, that isn't real, so what can I actually get?







# Poll

# VARIOUS ESS TYPES Requirements oriented system design







#### 5-hour Front of the Meter ESS

- Front of the meter Utility asset
- Distribution support
- 4 MW / 20 MWh
- Applications
- Resilience & Backup Power
- Islanding
- Peak Shaving



#### Mobile ESS

- Hybrid diesel portable generator
- Shock and vibe compliant to SAE J2380 and SAE J2464
- Battery reduces peak power and variable load demands on diesel generator
- Improves voltage and frequency stability under variable load
- Cuts the generator size in half
- NUVATION ENERGY

#### Island Microgrid ESS

- 100% solar powered island resort off the coast of Panama
- Solar PV + ESS + Gensets
- Site controller unified control of 27 battery banks and two diesel gensets
- Augmented capacity with two types of battery systems
- AGM Lead Acid batteries

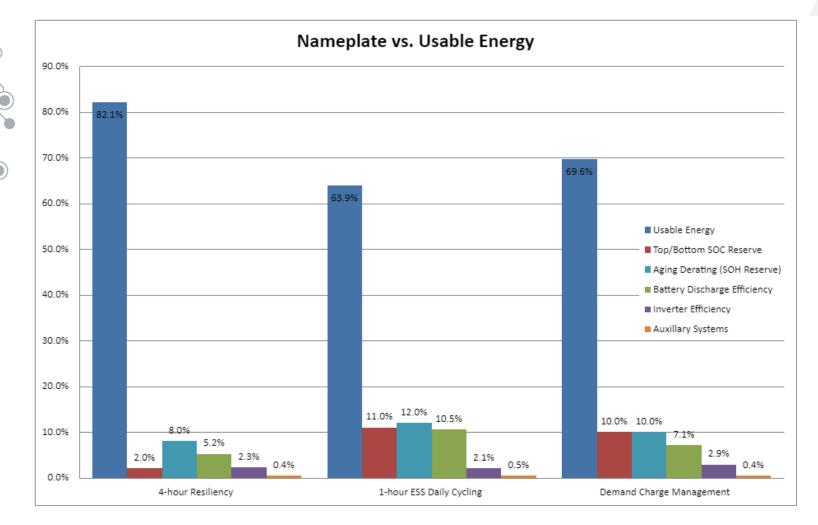
15-minute Behind the Meter ESS

- Wastewater Treatment plant in Santa Rosa, CA
- Custom ultra-compact 24-foot container for a wastewater treatment plant
- Spinning reserve, for diesel genset changeover in case of grid outage
- Demand Charge Management
- Lithium NMC high power chemistry with high energy density

# NAMEPLATE VS.USABLE ENERGY

# NAMEPLATE VS USABLE ENERGY Terminology is important

### Nameplate Energy


- The rated or nominal capacity typically extrapolated from the cell or module datasheet.
  - Nominal Stack Voltage (Vnom) X Capacity (Ah) = Nominal Capacity (kWh)

### Usable Energy

- The amount of energy delivered at the AC meter which includes all the energy losses in the ESS
- System losses include equipment efficiency, environmental conditions, ESS use case, heat gain from PCS, wires, bus bars, HVAC loads and battery.



# **CALCULATING USABLE ENERGY** How much of the Nameplate Capacity is delivered?



#### Model the ESS to understand:

- Actual AC power delivered
- PCS and ESS voltage limits
- Reserve SOC capacity to match usecase
- Expected performance as battery ages
- Battery cell mismatch
- Efficiency loss to heat

NUVATION

ENERGY

 Environmental conditions resulting in variable auxiliary loads

# NAMEPLATE VS USABLE ENERGY How to size an ESS for site requirements

- Often RFQs require a usable AC Power and Energy for many years requiring significantly more energy capacity than the nameplate ESS rating
- When bidding a project, do you aggressively reduce the excess capacity without significant buffer?
- Or significantly oversize the system, and run the risk that other bidders under bid you?







# Poll

# NUVATION ENERGY

UP FRONT COST VS TOTAL COST OF OWNERSHIP

# **UP-FRONT VS. LIFETIME COST**

- What are all the costs we can calculate during the ESS useful life?
- Up-front Costs
  - Easy to calculate, but simplistic point of view
- Lifetime Costs
  - Must be estimated, but shows the complete picture



- How do you calculate the cost?
  - Up-front Costs + Product Lifetime Costs = Total Cost of Ownership



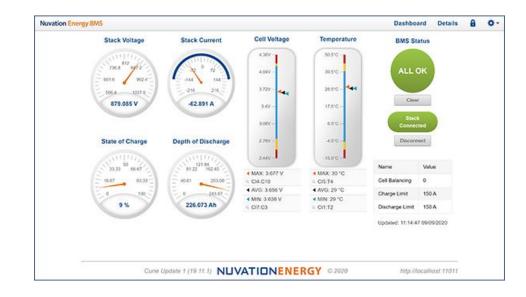
# UP-FRONT COST Defined and Known

- Typical known and defined costs:
  - Price of equipment, install estimate, etc.
  - Expected power and capacity
  - Product/performance warranty

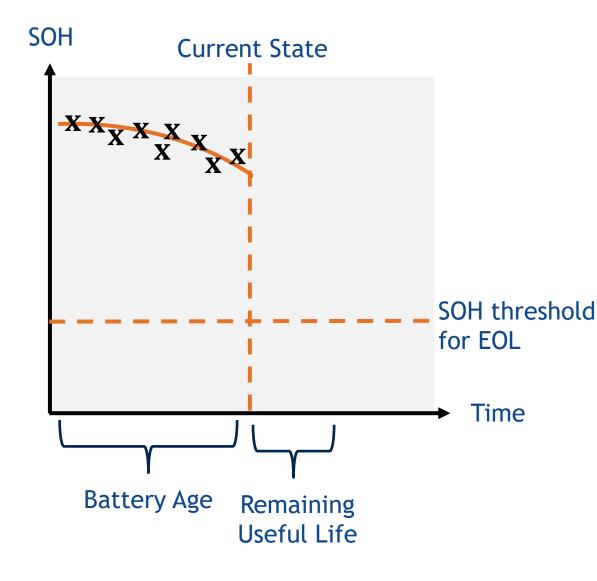




# LIFETIME COSTS Estimated or Unknown


- Operations & maintenance
- Component repair/replacement (warranty validation, predictive maintenance)
- Planned or unplanned downtime (predictive maintenance)
- Additional engineering effort for commissioning and integration
- Schedule delays which lead to delayed revenue or financial penalties
  - Commissioning issues
  - System integration issues
  - Permitting issues
  - Delivery lead time issues



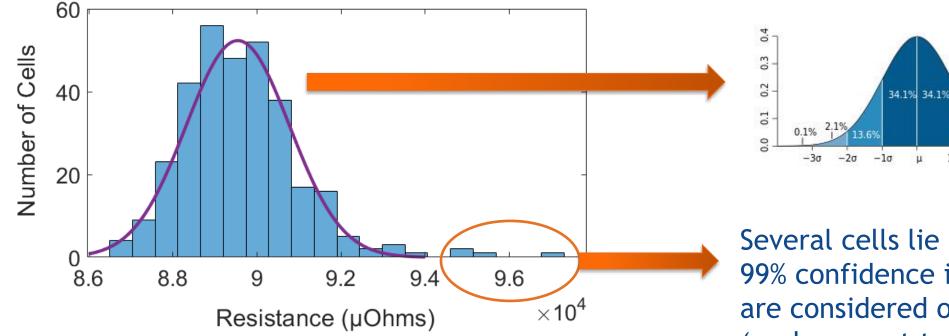

# MANAGE LIFETIME COSTS WITH DATA

BMS data logging and deep learning

- Predict Remaining Useful Life with SOH data
- Open Wire Detection "Discover outliers before they become a problem"
- Predictive maintenance with Nuvation's BMS self-check
- Warranty validation
  - Battery warranty tracking
  - Component replacement
  - Contactor life tracking



# **ADVANCED BATTERY ANALYTICS** State-of-Health vs. Remaining Useful Life




- State of Health is the current health of the battery. Based on capacity and resistance.
- Remaining useful life is the predicted, estimated time to failure.
- Same data used for battery warranty tracking can also enable cloud calculations of remaining useful life prediction.



# **PERFORMANCE: TRANSPARENCY**

An intelligent BMS provides increased detailed transparency of battery status, such as per cell SOH and impedance.



A histogram was generated for the individual cell resistances in the high voltage battery pack.

Several cells lie outside the 99% confidence interval and are considered outliers (replacement targets).

1σ



# NUVATION ENERGY

TOTAL COST OF OWNERSHIP COMPARISONS

# NEXT SPEAKER, JOE O'CONNOR

- Business Development Engineer, Nuvation Energy
- Masters in Manufacturing Engineer, Cal Poly San Luis Obispo / NYU Tandon
- SolarCity, Mercedes-Benz Energy
- Day job: Energy Storage Systems



Hobbies: Energy Storage Systems





# TOTAL COST OF OWNERSHIP Comparing three system designs

- Comparing three different parameters:
  - Hardware
  - Soft / Ongoing Costs
  - Risk of Schedule Delays



63'L x 12'W x 13'H concrete enclosures

#### A: LFP Field Installed ESS

- Very Large-sized Concrete ESS
  Enclosure
- Major components shipped separately and installed onsite



Large ISO container

#### B: NMC Factory Assembled ISO Container ESS

- Large-sized Factory Assembled ESS container
- NMC Highest energy density



29'L x 6'W x 10'H custom enclosure

#### C: LFP Factory Assembled Enclosure ESS

- Medium-sized Factory
  Assembled ESS enclosure
- LFP fire safe chemistry



# TOTAL COST OF OWNERSHIP Trade offs: Hardware







| Category                                | A: Field Installed<br>LFP | B: Factory Container<br>NMC | C: Factory Enclosure<br>LFP |
|-----------------------------------------|---------------------------|-----------------------------|-----------------------------|
| Initial price of system                 | \$                        | \$\$\$                      | \$\$                        |
| Battery module installation             | \$\$\$                    | None                        | None                        |
| Crane or forklift for moving containers | \$\$\$ (Crane)            | \$\$ (Crane)                | \$ (Forklift)               |
| Financial risk of thermal event         | \$\$                      | \$\$\$                      | \$                          |



# TOTAL COST OF OWNERSHIP Trade offs: Soft/Ongoing Costs



| Category                              | A: Field Installed<br>LFP | B: Factory Container<br>NMC | C: Factory Enclosure<br>LFP |
|---------------------------------------|---------------------------|-----------------------------|-----------------------------|
| 20-year performance guarantee         | \$\$                      | \$\$\$                      | \$\$                        |
| Augmentation (install more batteries) | \$\$                      | \$\$\$                      | \$                          |
| Training skilled labor                | \$\$\$                    | \$                          | \$                          |
| Maintenance/Component replacement     | \$                        | \$\$                        | \$                          |



# TOTAL COST OF OWNERSHIP Trade offs: Risk of Schedule Delay



| Category                        | A: Field Installed<br>LFP | B: Factory Container<br>NMC | C: Factory Enclosure<br>LFP |
|---------------------------------|---------------------------|-----------------------------|-----------------------------|
| Commissioning/integration Risks | \$\$                      | \$                          | \$                          |
| Permitting/regulatory Risks     | \$\$                      | \$\$\$                      | \$                          |
| Delivery lead time Risks        | \$                        | \$\$\$                      | \$\$                        |

So then, what is the best system design for our growing ESS industry? It depends on your goals.



# Martin Rheault

### VP Sales & Business Development, EVLO

- + 20 years in power sectors (Energy Storage, Wind, Solar and T&D)
- + Served as interim CTO since September 2020
- + Electrical Engineer
- Led the development, design and construction of Canada's largest merchant BESS





### **EVLO by Hydro-Québec**

Established in 1944, Hydro-Québec, the largest renewable energy producer in North America, created a fully owned subsidiary to support utilities delivering safe and sustainable high-capacity energy storage solutions.

**CLEAN ENERGY** 

24.2 TWh NET ELECTRICITY US EXPORT

202.7 TWh NET ELECTRICITY SALES

**10.9** B\$ REVENUES FOR 2020

64.7 B\$

36.7 GW

161,000 mi TRANSMISSION AND DISTRIBUTION LINES



### Who Are We?

**EVLO Energy Storage** designs, installs & operates energy storage systems to power a brighter future.

#### VISION

In a world undergoing an intense energy transition, our solutions drive the integration of renewable energy and the resilience of tomorrow's power grids.

#### MISSION

Our cutting-edge expertise and utility legacy establish us as the leaders in environmentally responsible storage. We design, install and operate accessible, safe and efficient energy storage solutions. Our patented, eco-friendly battery chemistry is the culmination of 40 years of research by our Hydro-Québec's advanced innovation lab

+100 employees

EVLO is a turnkey energy storage system and service provider

EVLO's energy storage product line ranges from compact commercial solutions to large utility-scale solutions





# EVLO Sustainable Storage Solutions

EVLO offers **unrivalled technology** for a **greener future.** 



#### HARDWARE INNOVATION

- + Safe LFP chemistry
- + Advanced safety features
- + Long cycle life
- + Utility-friendly design
- + High-density site layout
- + High-energy density
- + Simplified installation
- + Improved maintenance access
- + Extreme temperature package



#### **OPERATIONS & MAINTENANCE**

- + Remote monitoring & operations
- + Preventive maintenance
- + State of health reporting
- + Spare part strategy





#### SOFTWARE INTELLIGENCE

- + Fully integrated SW suite
- Optimizes system performance and safety
- + Flexible use case stacking
- Modern remote monitoring solution
- + High-speed grid interactive response
- Warranty and risk data management solution
- NERC CIP ready (cybersecurity)



#### ADDED-VALUE SERVICES

- + Project management
- + Simulation/Modelling
- + Commissioning
- + Recycling program
- + Power system consulting
- + Financing







# Thermal Runaway Challenges & Mitigations

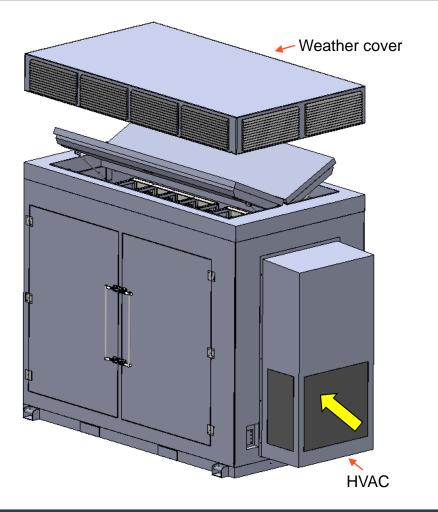
EVLO has developed a series of advanced safety features to minimize thermal runaway effect, such as explosive gases emission.

#### NFPA 855 STANDARD SUPPORTS TWO MITIGATION APPROACHES:

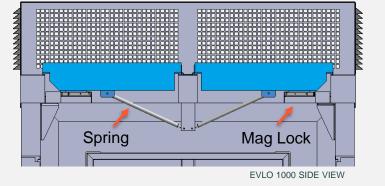
NFPA 68: Hydrogen detection **Deflagration Panels** Allows accumulation of Stop ESS activities hazardous gases but in case of Alert to first Responders deflagration, it is "executed" in a Local visual & sound alert controlled manner OR Automatic vent opening ÉVLO's choice HVAC economizer mode activated\* NFPA 69:  $\succ$ Battery rack's fan turned on Active Ventilation Maintain explosive gases concentration below 25% of the End of thermal runaway Lower Flammability Limit (LFL)

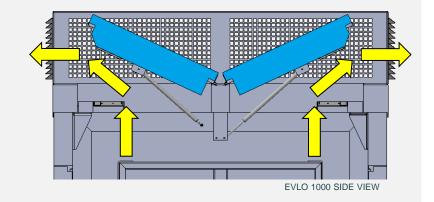
SEQUENCE

**OF EVENTS** 




SAFETY


**FEATURES** 


### Thermal Runaway Automatic Management

In order to be compliant with NFPA 69, EVLO Engineering team has developed an innovative way to perform active ventilation





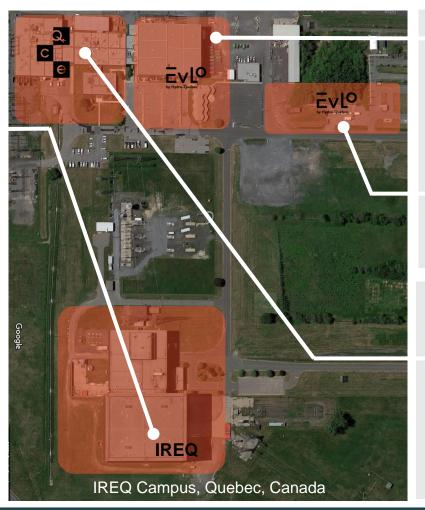




#### Active Ventilation Mode

# At the Heart of a World Class Research Center

IREQ Campus is the innovative strength of Hydro-Québec, where EVLO's battery and energy storage technologies were developed.




#### **IREQ** HYDRO-QUÉBEC RESEARCH CENTER

- + High Voltage Lab (1971)
  - HV and EHV substation transfer testing and commissioning
  - TYPE test for any new equipment to be deployed in the grid
- + 735 kV pioneer
- + Fundamental research

by Hydro-Québec

- + Grid and equipment modeling and simulating
- + Chemistry and advanced material research labs
- + Advanced robotic labs for grid inspection
- + +200 researchers in power systems
- + High performance calculating center (CASIR)



#### EVLO's Headquarters and Labs

#### EVLO's BESS testing site:

- Full size energy storage systems
- Field integration test (FIT)
- Customer specific testing
- Certification
- ► Training

#### CENTER OF EXCELLENCE IN TRANSPORTATION ELECTRIFICATION AND ENERGY STORAGE

A world-class innovation hub in the field of battery materials for electric vehicles and energy storage applications.

- ▶ 100+ patent families
- ▶ 40+ years of innovation

38

# The Right Sizing for Each Use Case

At EVLO we invest our efforts in modeling and simulating up front, to guarantee down the road the success of your project.

#### **RESILIENCY - MICROGRID**



LAC-MÉGANTIC, CANADA

Following the 2013 railway disaster, Lac-Mégantic rebuilt uses EVLO to be part of the microgrid and to integrate ~1,700 solar panels

- Peak shaving, solar energy integration islanding, resilience
- + System size: 0.6 MW / 0.6 MWh
- + Energy storage product: EVLO 300
- + Client: Hydro-Québec
- + Commissioning: 2021

#### **INTEGRATION - RENEWABLES**



TONNERRE PROJECT, FRANCE

EVLO will provide grid stability during unforeseen circumstances and help balance the power transmission system with frequency regulation (50 Hz)

- + Grid stability, resilience
- + System size: 9 MW / 9 MWh
- + Energy storage product: EVLO 500
- + Client: RTE, France
- + Commissioning: 2021

#### **BACKUP POWER - TRANSMISSION**



SUBSTATION, LA VERENDRYE, CANADA

Using batteries instead of diesel generators to maintain the utility services during upgrade work on a remote transportation line

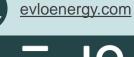
- + Resilience, backup power, peak shaving
- + System size: 4 MW / 20 MWh (5 hours)
- + Energy storage product: EVLO 1000
- + Client: Hydro-Québec
- + Commissioning: 2022
- + GHG savings: 3495 t





- > Application / cycling definition is crucial
- > Safety attributes should be weighted in the procurement process
- > Testing facilities are important to enable field integration tests "FIT"
- > Financial strength of solution providers is a box to check early




### **Get in Touch**

EVLO is a highly skilled organization thrilled to contribute to accelerating the transition to renewable energies



+1 (403) 354-0660 rheault.martin@evloenergy.com evloenergy.com

## **Martin Rheault**



by Hydro-Québec







info@evloenergy.com



+1 (450) 925-1202





# THANK YOU! QUESTIONS?



Accelerate Your Energy Storage Project info@nuvationenergy.com
 nuvationenergy.com
 855-261-0507













- Receive powerful market intelligence
- Influence and educate key

stakeholders

• Access industry experts

- **Network** and build partnerships
- Develop new business opportunities
- Gain recognition as an industry leader
  - at our events and web presence

# Thank you!

Get in touch: info@storagealliance.org www.storagealliance.org